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TRANSIENT CLASSIFIER SYSTEMS AND MAN-MACHINE INTERFACE RESEARCH
SBIR PHASE I PROJECT SUMMARY

TOPIC NO.: N86-10 SPONSOR: ONR

" % PRESEARCH INCORPORATED, 8500 EXECUTIVE PARK AVENUE, FAIRFAX, VA 22031

1. Purpose. The purpose of Presearch's Phase I research was to
investigate human classification performance and the underlying
psychophysical models of perception and cognition. The research

:r was directed toward the Navy's need for effective acoustic tran-
sient classifier systems for advanced ASW programs; where effec-
tiveness must be measured in speed, accuracy, and operability.
This basic classification research is also applicable to fields

o: such as real-time classification of radar signals, seismic pro-
cessing, and monitoring vibrations for incipient failures and loose
parts at nuclear power plants.

2. Description of Work. The work performed in Phase I consisted
of a pilot psychophysical experiment and automatic classification
algorithm research on the NRL Cray Computer. Our research approach
is to integrate psychophysical perceptual and cognitive models of
human classification into the design of intelligent adaptive transi-
ent detector/classifiers. Central to the research is the trans-
formation of continuously sampled acoustic data into an efficient
representation of replicable finite patterns. This Asynchronous
Syntactic Pattern (ASP) sensor concept is used to reduce computer
processing/storage requirements and to simplify human classification
tasks.

3. Results. The results of the experiment showed that transient
detection and classification performance are highly independent,

-% and both are very sensitive to signal-to-noise ratio (SNR). Unknown
transients were recognized rapidly; however, performance at low SNR
was not comparable to that against known transients. Transient
specific syntax proved to be an even stronger determinant of perfor-
mance than the known vs. unknown condition. Novice performance in
detecting a target by its transient emissions was comparable to
theoretical best current broadband techniques. Experienced sonar
operators outperformed the novices by 12 dB. zyz

The automatic classification algorithm research demonstrated
use of syntactic and semantic state variable feature-space repre-
sentations to perform computationally efficient classification of
transient patterns (50 times real-time in FORTRAN) and large-scale
reduction of data (500:1). The algorithm recognized many singular.. "
and correlated transient events. An unexpected and exciting result
was recognition and modal separation of mixed mode tonal signals as
correlated transients in the time domain.
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1.0 EXECUTIVE SUMMARY

1.1 BACKGROUND

9Presearch has performed basic research on the detection of

underwater acoustic transients under Internal Research and

Development for the past several years. The research focused on

a time domain based Automatic Disturbance Monitor (ADM) capable

of performing feature recognition of replicable transient events.

This previous research, when applied to certain types of actual

transient data, demonstrated some inherent advantages over more

conventional spectral-domain approaches. This included more

robust and sensitive detection of transients of variable duration,

shape, and bandwidth. Presearch has a strong background in man-

machine interface (MMI) design of displays, controls, and inter-

active decision aids. In the present research we are combining

these capabilities and expanding our basic research of automatic

algorithms and MMI towards an integrated workstation concept for

improving transient classification.

1.2 PURPOSE

Presearch's research is focused on the underlying psycho-

physical models of perception and cognition and their application

to the man-machine interaction required to optimize detection

and human classification performance. Realistic operational

context was used wherever it did not impose unreasonable con-

straints on the basic research.

% %
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1.3 APPROACH

Our research approach is to integrate psychophysical

perceptual and cognitive models of human classification into

intelligent detection/classifier applications. Central to the

research is the idea of immediately transforming continuous

sampled acoustic data into finite patterns by means of an

Asynchronous Syntactic Pattern (ASP) sensor. The idea of

autonomous representation of finite patterns from a data stream

reduces storage requirements and simplifies classification

responses of a human operator. Syntactic and semantic state

variables constitute the central parameters of the asynchronous

interface.

1.4 DESCRIPTION OF WORK

The work includes a psychophysical experiment and auto-

matic algorithm research. The psychophysical experiment was

performed at the Catholic University Human Performance Labora-

tory. Its purpose is to demonstrate a testbed for comparing

alternative detection/classification algorithms and MMI in terms

of the efficiency and reliability of decision performance. Per-

formance is measured by receiver operating characteristics

(ROC), reaction time, and learning curves. Specific objectives

are: (1) assess the impact of signal-to-noise ratio (SNR) on

Z. cognitive models of transient classification, (2) establish per-

formance benchmarks for comparing alternative methodologies, and

(3) evaluate the impact on performance of noise on detection and

classification of known and unknown transient signal patterns.

The automatic classification algorithm research analyzed

unclassified transient acoustic events. The purpose of the

1-2
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research was to apply psychophysical models in automatic transi-

ent data pattern analysis, detection, and classification con-

cepts. The goal was automatic feature representation of transi-

ents applied as a self-learning algorithm for identifying the

feature pattern of correlated transients, and a binary state

variable syntax algorithm for recognizing the syntactic pattern

of these transient features. The calculations were performed on

the Cray Computer at the Naval Research Laboratory.

1.5 RESULTS OF RESEARCH

w1.5.1 Psychophysical Experiment

Preliminary analysis of the pilot experiment has produced

the following six significant results regarding detection and
classification of underwater transients:

1. Transient detection and classification performance is

related to propagation distance and SNR.

2. Novices detect and classify unknown transients. This

implies internal representation and recognition of

pure noise backgrounds.

3. Information feedback after classification resulted in
better performance at low SNR.

4. Variance in performance from transient to transient,

the specific structure (syntax) effect, was much

stronger than variance between known vs. unknown

groups.

1-3
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S. Detection performance with acoustic transients by

novices was comparable to that expected of broadband

signatures; performance of experienced sonar operators

was 12 dB better.

6. Detection and classification decisions are inter-

related differently for high and low SNR transient

signals.

1.5.2 Automatic Detection/Classification Experiment

The result of the automatic classification experiment

indicated that signals could be precisely correlated by replica-

tive feature patterns or by matching bit mapped syntax. Infor-

mation about sources could be ascertained by automatically

sensing the features of replicated pulses. The following is a

i brief description of the feature classification hierarchy uti-

lized for the preliminary feasibility analysis:

1. At the top of the feature classification hierarchy are

ok entities: Leading Edges of long complex episodes;

narrowband Pulsed Carriers; and broadband Pulses.

2. The second level is described by a set of feature

patterns dependent on pulse shape, dominant frequency,

Xand frequency shift characteristic.

.W-.
Z 3. The third level is a bit-mapped syntactic time-ordered

pattern of a specific feature or feature pattern.

The following points summarize the results of testing the

6automatic classification algorithm:

1-4
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1. Out of six long complex Leading Edge signals examined,

two of them correlated, (a) by extremely precise

feature attribute values at the first pulse of the

wave train, and (b) by 100% bit matching of the syntax

of energy excitations indicating a clear and confirmed

replication of the complex event.

2. Numerous Pulsed Carriers were sensed. Most were

apparently random perturbation of feature values as

would be expected from chance occurrences in the

random background. In two cases, in the one-minute

sample of data which was analyzed, the same feature

pattern was replicated many times; eight times in one

case; twelve, in the other case. More work needs to

be done to be certain as to whether the repeated

features are due to chance, random multiple occurrences

of a transient pulse, or periodic occurrences which

were randomly modulated above the broadband background.

The latter source would be due to constructive inter-

ference of overtones of different timbre from two

different resonant sources, i.e., like a violin and

oboe emitting nearly the same fundamental mode fre-

quency, but each with its own unique set of harmonics.

The effect could not be produced by feature detection

and classification of white random data. The randomi-

zation of timbre peak occurrences may be due to the

low S/N relative to the broadband background or due to

the effect of sub-harmonics of finite amplitude sources.

3. The replicated pulse arrivals observed in the minute

sample of broadband data were automatically sensed.

Their time differential matrix was computed. Analysis

of presumed timbre peaks as integer arrivals identified

t-5
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a.

jthem as due to possibly stable overtones; one with a

timbre peak repetition time of 3.4693 msec; the other

3.0884 msec. These were sensed in the same overlapping

time interval as distinguishable pulses identifiaile

by their characteristic feature value pattern. The

analysis indicated that time peaks could be timed with

a standard deviation of .2 to .4 msec.

4. Possible multipath arrivals (energy from a singiz

source travelling along different paths) were Ien-

tified with an apparent reflection coefficient is L,.;

as .95. These are of doubtful validity in th:it ,j9

effects were observed in random noise tests. Mor.:

features would be required for reliable cirrelit .n

multipaths.

5. Source characteristics were extracted fr)m bradhan]

data at very low recognition differentials by identi-

fying replicated feature patterns in real time. On:

a few out of thousands of replications of a heat

pattern need to be sensed in order to identify such

sources and to identify their carrier frequency and

pulse repetition rate.

6. Data sampled at 8000 Hz was processed with the auto-

matic classification algorithm in nonoptimized FORTRAN

code at 50 times real time on the NRL Cray Computer.

Automatic feature classification reduced the storage

requirement for data by a factor of 500.

1-6
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Our Automatic Detection/Classification Experiment demon-

strated the capability of finding sources of unknown transient

waveforms in real time by automatically classifying entities,

i.e., pulses and complex episodes of pulses. Also, by correlat-

ing replicable features of each entity and by correlating the

time-ordered syntax feature patterns. The purpose of automatic

detection/classification is real-time reduction of data to cues

which support human classification and which trigger action

based on recognition of important acoustic sources. It does

this by extracting cues for immediate consideration; by removing

known sources of causal uncertainty from the data stream; and by

recognition of replicable patterns as unknown signals subject to

possible semantic association.
,°.

1.6 POTENTIAL APPLICATIONS

This research effort is directly applicable to advanced

submarine, surface ship, air, and surveillance antisubmarine

warfare (ASW) combat system programs. Preliminary analyses of

throughput on the Cray and the results of the psychophysical

* experiment indicate that current processing technology is suffi-

cient to make major strides in: (a) reducing operator workload,

(b) improving initial detection/classification performance, and

(c) solving the ASW false alarm problem, including false alarms

from transient detections and unclassified active and/or broad-

band contacts. Other signal processing applications include
radar, seismic, and speech. An area of potential commercial

application is incipient failure analysis of nuclear power

plants and other error-critical physical processes.

1-.
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1.7 CONTENTS

Section 2 contains the background and theoretical frame-
work of our research. Section 3 describes the details of our

Psychophysical Experiment. Section 4 describes our automatic
classification research performed on the Cray Computer. Section

S contains the references.

'..
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2.0 THEORETICAL FRAMEWORK

2.1 INTRODUCTION AND OVERVIEW

This section describes the background and theoretical

framework for our transient classifier and man-machine interface

(MMI) research.

Central to the research is the idea of immediately trans-
", forming continuous sampled acoustic data into finite patterns by

means of an Asynchronous Syntactic Pattern (ASP) sensor. The

idea of autonomous representation of finite patterns from a data

stream reduces storage requirements and simplifies classifica-

tion responses of a human operator. The ASP sensors transmit

much less data; facilitating interactive classification deci-

sions by a human operator and/or validating manual detection/

classification decisions.

2.2 THE RESEARCH BACKGROUND OF AN AUTOMATIC DISTURBANCE MONITOR

SPresearch sponsored 3 years of continuing research by Sax
et al. (ref. 1, 2, 3, 4) on an Automatic Disturbance Monitor

(ADM). This research pursued an episodic event automatic detec-
tion concept based on time domain pattern features of transient

events. A Navy/Industry Cooperative Research and Development

(NICRAD) agreement gave Presearch the opportunity to test our

monitoring device on real acoustic transients.

In tests performed on acoustic transients, the largest

transients occurred as episodes with intensities up to 50 dB

above the average broadband background level. These episodes

scaled with intensity. The smallest transient waveforms had

highest frequency and bandwidth indicating the small spatial

2-1
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scale of the acoustic sources. By contrast, larger intensity

transients, up to 50 dB larger than the smallest transients

contained multiple bands of low bandwidth and low frequency.

The rise time of leading edges and in some cases the pulses

* composing transient signals rose to full scale and in some cases

decayed on a millisecond time scale. This time resolution

requirement is the basis of our broadband time domain approach

*to processing signals from acoustic disturbances.

Y2.3 NOISE TESTS OF THE AUTOMATIC DISTURBANCE MONITOR

A simple model for transients as a time-domain detection

entity is to presume the maximum episode is fixed at SO dB above

broadband background. It is assumed that the largest transient

attenuates 10 dB in excess of the broadband background resonance

emitted by the source. Assuming that largest episodes are
detected at maximum distance from the source, the power excess

of the largest transient impulse is at least 12 dB above the

ocean noise background to maintain an acceptably low false alarm

rate. With these conservative assumptions, detection of maximum

episodes in the time domain is equivalent to sensing the reso-

nant background source at -28 dB (50 dB-10 dB-12 dB) relative to

ocean noise.

This idea was tested by adding gaussian noise to NICRAD

test data with a result of -24 dB for a SO-dB episode. With a

correction of 10 dB for absorption, -14 dB was obtained. This

experiment's result deviated from the ideal of -28 dB expected.

To acceptably control the false alarm rate in the experiment, a

higher threshold of 14 dB was required. This accounts for 2.5
dB of the 14 dB discrepancy in detection. The use of a second

difference operator applied to the data combined with nonlinear

2-2
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magnitude scaling of the transient episodes accounts for the

rest.

Small episodes were always observed to have longer band-

width than larger episodes, which were lower frequency and had

much narrower bandwidth. The filter response of the ADM, which

detected the second difference of transient data peaks, peaked

at 6000 Hz and the response was down to -12.5 dB at the dominant

900 Hz frequency of the largest episode. Given this explana-

tion, the results are consistent to within 1 dB of the above

expectation. These results indicate no serious problem in

designing a feasible detector of largest transient episodes. By

removing the second difference operator, our experiment would

have detected the source by instantaneous power emission at

about -28 dB as expected.

2.4 THE ASYNCHRONOUS CLASSIFIER INTERFACE (ACI): A NEW ROLE
FOR ADM

The filter of the ADM required a more appropriate design

to optimize capture of largest episodes. In part, this problem

was solved by designing the asynchonous sensor model tested on

the Cray computer simply by eliminating the second difference

prefiltering of input data, and by abandoning the concept of an

energy detector. In abandoning energy threshold as a detection

criteria, and substituting feature replication, we have the

potential of increasing detection capability by as much as the

14 dB threshold requirement.

The ACI replaces energy detection by an asynchronous

feature sensor. This sensor represents transients by a hierarchy

of patterns. A syntactic representation of complex physical

signals is well founded in psychophysics by Howard and Silverman

2-3
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(ref. 5), Howard and Ballas (ref. 6, 7), Howard (ref. 8) and

Howard and O'Hare (ref. 9). The functions of feature sensors

are to learn to form graphical and other possibly diagnostic

pattern representations, to recognize known patterns in real

time, and to recognize targeted patterns or pattern syntax which

will point to files supporting sonar operator classification

decisions. The ACI operating as a preprocessor aids classifica-

tion by enhancing human perception and memory.

Analysis of ACI focused our research on ADM as an asyn-

chronous pattern sensor in a man-machine interface workstation.

ACI is an ADM model which provides automatic preprocessing back-

ground support of primarily interactive classification tasks.

The automatic side of the interface is shown in Figure 2-1,
taken from our Phase I ONR SBIR proposal. The overall architec-

ture of the classifier interface is shown in Figure 2-2 from the

same proposal. Our present theory of a classifier interface

adheres to the proposed architecture, but the automatic back-

ground processing is slightly different.

In the revised approach, signal identification and dis-

criminant encoding is hierarchical. At the highest level, a

label is assigned to describe a transient entity, i.e., leading

edge of a long wave train, or singular discrete impulse, etc.

Next, the entity is described by a number of different features,

- such as wave shape, average frequency, frequency shift, band-

width, modality, and other measurable characteristics. A certain

type of entity is identified by replication of its encoded fea-
ture values. The dynamic pattern, formed by sequences of entity-

features, defines the syntax of the complex transient distur-

bances of strings for feature attributes. A methodology of bit
mapping syntactic data was described by Holland (ref. 10, 11)

and others. The bit mapped state-variable input are "messages."

2-4
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Sensors 1 . Sensors 1.. 2 Sensors

*Continuous *Continuous *Continuous
Data Data Data

interface
Unit

r * Synchronously Sampled Date

Parallel Processing Control and Memory Serial ProcessingProcessing

" Synchronous Real-Time * 1/O Buffers o Asynchronous Disturbance-
Operation * Long-Term Signal Data Triggered operation

* Pattern Analysis Files * Integrated Sensor Scan
* Automatic Detection * Short-Term Signal Stacks * Automatic Cognition

Queues
* Disturbance Flags ____________

Interactive Processing

*Expert User's Interface
- Program Maintenance
- Classification Validation

*Data Communication
Graphical 8Audio Display
Functions

Figure 2-1. Automatic Disturbance Monitor (ADM) Architecture
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.

The Holland Classifier searches memory for a match between a new

message and a stack of sorted patterns discerned from replica-

tion of old messages. Noisy messages with bit errors and weak

messages with missing bits can be classified by fuzzy matches in

a dictionary of sorted keys or by high covariances with a matrix

of Holland Classifier Masks. A more recent approach to this

bit-mapped classification approach is described by Frey (ref.

12). Holland Classifiers have been applied as knowledge models;

for example, in predicting international events by Schrodt (ref.
, 13).

*1 Our treatment of the problem of self-learning departs from

the original model proposed for Phase 1. The former is shown in

Figure 2-1 with untargeted messages referenced to a singular

file. In the new model, features of singular signals are stored

on large stacks in real-time program memory and are correlated

Iwith new messages in search of repetitions of feature patterns.

• . Eventually, statistical descriptors of singularly uncorrelated

" signals are popped and pushed into a lower tier stack in search

of longer time scale correlations. Replicated episodic signals

with common features are set up as a temporary mask. The

temporary mask's purpose is to initialize a new neural network

connection by switching similar messages into the synapse until

-: either a classification mask is formed or the connection is cut.

2.5 THE AUTOMATIC PROCESSING SIDE OF THE ACI

Encoding messages and recognizing known patterns has been

discussed. Now the problem of transforming noisy messages and

broken or partially defined patterns to known classification

masks--automatic recall--must be considered. In addition to

automatic recall; algorithms for self-learning of repeated pat-

terns must be considered.

2-7
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Neural network synapse models are used for two purposes:

for induction or restoration of sufficiently well defined par-
el tial patterns, or to validate identification of noisy messages.

A comprehensive description of neural network processing is

given by Jorgensen and Matheus (ref. 14). Their neural network

- model of a synapse is the modification of a concept attributed

.: to Hebb (ref. 15). It is remarkably analogous to a Dimus beam-

former: a beamed array of correlated binary state-variable

* patterns of variable and unknown dimension.

A possible relation between pattern correlation and neural

path activation is described by Kohonen (ref. 16). Rules cited

by Rumelhart and Zipser (ref. 17) show ways of forming new con-

nections and breaking off old connections as a basis for self-

. learning of new patterns. The progress we will report in our
asynchronous sensor research on the Cray is limited to discrimi-a nant measurements and feature extraction algorithms. The
building of a feature hierarchy and self-learning synapse models

will be the goal of future research.

2 2.6 INTERFACE REQUIREMENTS OF ONLINE AUTOMATIC AND INTERACTIVE
PROCESSING

'rhe function of the classifier interface is to help a

human operator make more accurate and faster classification of

targeted sources. Tasks, associated with classification deci-

sions, are partitioned between a background of automatic pro-

cessing (shown in Figure 2-3) and a foreground of interactive

processing (shown in Figure 2-4). The partitioning depends on

the purpose of the classification. Two primary purposes exist:
excitative classification of patterns possibly related to high

*priority targeted sources; and inhibitive classification of

objects neither targeted for classification nor operationally

2-8
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significant, but which may interfere and degrade classification

performance. Excitative classifications are totally under

interactive control by the operator. In that case, the function

of the automatic background is to generate list-directed pointers

to graphical or auditory data files. This is done unobtrusively.

A directory is invoked by the operator and scanned for keystroke

paths leading to the picture or auditory files required to sup-

port an excitative classification decision.

Graphical displays of noise-free representations of possi-

ble pattern classifications, under guidance of a classifier mask

directory, serve to reinforce operator decisions, i.e., see if

the stimulus category was targeted or inhibited; see if stimulus

is similar to the "noisy" message to be classified.

In the absence of a perceived required action by the

operator, the automatic background processor may invoke an alarm

procedure. In that case, the automatic side of the interface

prompts the operator for a decision on a stack of transient

records it is prepared to display upon the operator's command.

For that, the operator could hit a key signifying an authorized

presence. After making a classification, the operator optionally

.. could observe a directory list of alternative classifications
and generate a report on the classification of any new messages

by filtering a pattern catalog to obtain matches. At this level,

filtering could optionally involve rearranging columns of attri-

butes by list command, or sorting, scoping, and finding records

meeting any prior or newly specified relational requirements.

On command, the interactive environment displays a list of fil-

tered features supporting the operator's and other alternative

classifications consistent with the current message directory.

To the extent that time permits, the final decision is supported

not only by feature attributes but by inspecting a hierarchy of

%"
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classifier masks designed as shortest information paths to

targeted sources, and their corresponding pointers to relevant

picture or auditory files.

The inhibitive function of classification is important

because most transients are irrelevant to operating require-

ments. They make demands on the attention of an operator, with-

out any value added. These are always present due to abundant

own-ship transients, highly structured sources of complex sounds

in the local environment, and innumerable random transients

indicative of highly complex sources or perturbations of the
medium. Suppression of self-noise and other inhibitive signals,

which are known to interfere with and degrade the operational

response to true excitational stimulus, is performed automatic-

ally. The purpose is to suppress these positively identified

interfering transient episodes which are known to lengthen reac-a tion times and cause serious classification errors. The operator
has a supervisory option of examining the current working direc-

tory list of inhibitory messages; displaying the messages with

their corresponding mask; in doubtful cases examining picture
*and auditory files; and if desired, deleting the message from a

working directory of the automatic background processor.

2.7 TRANSIENT EVALUATION ENVIRONMENT

Reference to specific operator actions in the above dis-

cussion is entirely notional and not indicative of an operable

MMI design. Fundamental to the development of both algorithms

and MMI is our concept of a transient evaluation environment.

The transient evaluation environment is the integration of hard-
ware, software, and actual data into a basic research develop-

ment and test tool using psychophysical methods and measures of
man-machine performance. Formal psychophysical experimentation

2-12
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and analysis provides both the valid measurement of performance

and an understanding of underlying human perceptual and cogni-

tive processes relevant to design of classifier systems.

Already our classification algorithm research has derived sig-

nificant benefits from applying human models to automatic pro-

cessing. Making the machine more man-like can both improve

machine performance and provide a common ground to improve

operator understanding of background processing capabilities,

strengths, and weaknesses.

A parallel, and equally important role for the transient

evaluation environment is in the area of transient data analysis

and data base development. The identification of invariants in

each acoustic transient signal-type across operational param-

eters such as environment, source constraints, such as limits of

operating speed and depth, must be empirically driven as well as

based on theoretical grounds. A facility is envisioned; sup-

ported by environmental models and data. A functional partition

of a transient evaluation environment is illustrated in Figure

2-5. A modular architecture is proposed to facilitate rapid

software development and update using "plug in" components.

This approach will also translate into tactical software design

consistent with rapid tactical updates.

The transient evaluation environment is also capable of support-
ing transient classifier systems beyond the basic research

stage. At this point specific program and system constraints

are added and the environment becomes a rapid prototyping facil-

ity. Rapid feedback of operator performance is critical in

V& order to cost-effectively determine whether an innovative algo-

rithm or MMI concept helps or hinders typical operator perfor-

mance. For example, a proposed design concept is tested by

operators using known transient signals added to representative

I.-1
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noise under a range of propagation conditions. The test results

are appended to a psychophysical experiment data base. By spe-
is. cifying relational experimental conditions, i.e., propagation

range and noise state; relevant receiver operating characteris-

tic (ROC) curves, reaction times, and learning curves can be

derived. Test data are selected from a standard pool of typical

y transient episodes. This includes frequent "noisy" random

transients expected in the local environment and structured

transients from diverse sources, i.e., biologics, ice, and own-

ship sources.

To be practical, these benchmarks must be extrapolated

from standard tests to other operational situations. This

- requires validation of predicted performance and variances by

, psychophysical models. Finally, the transient evaluation envi-
ronment is critical to life-cycle maintenance, including algo-

rithm/MNI upgrades and data-base update. Psychophysics is

needed, not to design experiments to resolve cognitive models,

but to perform cognitive interpretation of performance based on

the large data base of an ongoing experiment. This is expected

to lower the cost and accelerate the rate at which problems are

resolved by psychophysics.

..
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3.0 PILOT PSYCHOPHYSICAL EXPERIMENT

This section describes the objectives, procedures, and

results of Presearch's pilot psychophysical experiment. The

experiment was a joint effort between Catholic University's
Human Performance Laboratory (HPL) and Presearch. HPL provided

the facilities, including signal processing, displays, experi-

mental control, and data gathering. Experimental design and

results analysis were joint undertakings.

The purpose of conducting a psychophysical experiment

under our transient classifier systems and MMI research was to

establish the feasibility of our proposed transient evaluation

environment concept (Section 2.7). The specific objectives of

the pilot experiment were threefold: (1) assess the impact of

SNR on transient classification, (2) establish performance

i benchmarks for discrimination against noise (detection), and

(3) compare performance between known and novel transient

4-.. signals. At the beginning of our research, we expected the

experiment to raise more questions about the underlying human

perceptual and cognitive processes than it would answer. The
immediate goal was to direct the research towards areas most

relevant to operational situations. The experiment was inten-

tionally structured to promote further inquiry.

IV

3.1 BACKGROUND

The experimental procedure emulated a multisensor-stream

scenario typical of a multiple-buoy or multibeam configuration.

The scenario assumed the existence of an automatic transient

detector ("bell ringer") that monitored all sensor streams,

detected possible transients, windowed and processed the raw
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data, and passed the data to the operator for classification. A

monochrome spectrogram or Fastgram (a time verus frequency B-

Scan) was selected as the display mode. The operator classified

the data in one of three ways: (1) as one of a set of known

transients, (2) as a new or unknown transient, or (3) as noise

alone (i.e., a false alarm for the "bell ringer"). The operator

then proceeded to the next candidate. Although this operating

concept is oversimplified, it represents several fundamental

operator tasks that are required in an interactive classifica-

tion system.

The multisensor-stream scenario had reduced semantic or

contextual information in that each potential transient snapshot

..4 relayed to the operator was independent, i.e., from a different
beam or buoy. Thus transient type (target type) and SNR (range)

0were randomized in successive snapshots (experimental trials).
IThe impact of semantic information from correlated spatial

observations, and prior knowledge derived from intelligence

and/or other sensors in both the multisensor-stream (search mode)

*and single-sensor stream (tracking mode), will be a future

research effort.

The experiment dealt entirely with actions of the operator

related to the transients presented by the assumed "bell ringer."

VNo attempt was made at this stage of the research to integrate a

real-time automatic, transient detector into the experimental

paradigm. Instead, the transient snapshots were selected

* beforehand from a digital tape of real data. Gaussian noise was

added to the time domain data and each signal was scaled to four

different SNRs to emulate propagation loss at various ranges.

The use of Navy standard environmental models such as RAYMODE or

FACT, and more complex noise models such as Magnum-Moll were

deferred to later research. Noise alone cases constitued 25% of

3-2
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the experimental trials, representing a fairly poor "bell

ringer." This result is probably not consistent with opera-

tional requirements concerning operator workload; however it was
required for experimental purposes to collect sufficient data to

0establish operator false alarm rates.

Experimental design in which transient and procedural

parameters are selected and controlled by the researcher repre-

sents a necessary non-operational constraint that must be

consciously managed to optimize the acquisition and transfer

of practical knowledge. Experiments provide variable degrees

of freedom and/or direct operational parallels depending on the

issues to be addressed. In the design of this experiment, two

important departures from psychophysical protocols were made in

order to emulate the operational situation. First, noise was

added to the time domain data rather than to image space, i.e.,

directly to the processed display. This step was critical

because overlapping Fourier transforms used for Fastgrams

would result in noise that was correlated from line to line in

the image. Noise added in image space is unrealistic because

it is uncorrelated from time to time. To examine transient-

classification performance in the presence of noise that is

present at the transducer (ambient and self noise), it is neces-
sary to emulate an operational situation and process the noise

along with the signal.

The second departure involved scaling the display such

that the noise level remained constant regardless of signal SNR,

rather than keeping the signal level constant and scaling the

noise. The vast majority (if not all) acoustic displays employ

, the constant noise level approach for sound psychophysical

reasons. These reasons include:
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(1) maximum use of dynamic range across all noise conditions;

(2) consistency in time and across environment; and (3) exploi-

tation of natural biological contour detectors, i.e., neural

pathways tuned to spatial and temporal first and second deriva-

tives of energy. Also, operator knowledge of the instantaneous

noise condition is secondary to detection/classification of

targets themselves. In the current experimental paradigm, scal-

ing the noise instead of the signal would have resulted in a

direct cue for target range, i.e., SNR, not available in actual

practice. For example, the long-range, low-SNR cases would have

generated significantly brighter, average space-luminance on the

display if the noise had been scaled up. With the signal scaled

to the appropriate SNR, only the signal itself and not the back-

ground provided any clues as to target range.

3.2 EXPERIMENT 1

3.2.1 Data Acquisition Preparation

The data consisted of unclassified transient acoustic

events stored on three standard magnetic tapes in VAX backup

format. The tape files were restored to disk and converted from

sequential access to direct access. This resulted in three data

files totalling 3516, 4096-point records or over 14 million data

samples.

These data samples were compressed by averaging each adja-

cent three points. This resulted in an effective reduction of

the sampling rate from the original 25 kHz rate to an 8.3 kHz

rate. Reduction was done to facilitate data handling since the

highest transient frequency expected in the data was 4 kHz.

(Analyses revealed little information at frequencies even close

to this rate.)
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3.2.2 Signal Processing

A simple peak detecting algorithm was developed to ini-
tially locate candidate transient events in the data. The algo-

rithm was based on a statistical model which was used to predict

the value of successive peaks from a moving window of immediately

preceding peaks. A peak was defined strictly as the mid-point

maximum of three successive points, s(n-1), s(n), and s(n+l)

having the relationship (s(n-1) < s(n) and s(n+l) < s(n)) or

(s(n-1) > s(n) and s(n+l) > s(n)). First and second order predic-

tion and~prediction error statistics were then computed. These

were used to predict the intensity of the next peak. A transient

event was defined as any peak with an absolute SNR value exceed-

ing the mean of the predictor sample by more than eight standard

deviations. Once a transient was located, 8,192 samples (0.98

sec) were extracted for each target.

The peak detector technique identified a "working sample"

of approximately 45 of the largest transient events which were

then inspected visually using an interactive time-domain editor.

A testing set of six transient targets was selected for the

experiment trials. A second set of six "null" or background
signals was also extracted from the data, one to match each of

' the six targets. This was accomplished by sampling from records

which were temporally contiguous to the target records. Hence,

background noise plus steady-state signatures were comparable
across the target and null sets.

An 8,192-point FFT was performed on each of the target

* -samples. Inspection of these data revealed harmonically-related

spectral hands as a distinguishing feature of these transient

events.

3-5
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A spectrogram wa constructed for each of the target

samples by computing 256, 256-point FFTs on adjacent samples

(approximately 31 ms) of the data, advancing successive FFTs by

31 samples (approximately 3.7 ms). The log of the spectral mag-

nitudes from this analysis was used to construct 256 x 256 pixel
Zimages which depicted the time-varying frequency composition of

each signal. Visual inspection of these data revealed clear

9 harmonic patterns, frequency glides, and broadband characteris-

tics for each of the transient events.

The actual test imagery was constructed by adding Gaussian

noise with zero mean and unit standard deviation to the signals

in the time domain before carrying out the spectrographic analy-

sis. Signal-to-noise ratio was varied by scaling the signals to

yield ratios of 20, 14, 8, 2 and -4 dB between the peak of the

signal and the Gaussian noise. The 20 dB case was used in the

preview segments of the experiment and the remaining four SNR

cases were used in the test trials. The images were all scaled

to have approximately equal space-average luminance on a mono-

chrome-video monitor.

Image preparation, control of the experimental events, and

data analyses were carried out on a general-purpose laboratory

computer (Digital Equipment Corporation VAX 11/750). The com-

puter served as the controlling host for a Gould Imaging and

Graphics IP8400 image processing system which was used for on-

line image processing, storage, and presentation. Participants

were seated in a soundproof testing room, with low-level ambient

light, imagery was viewed on a high-resolution, 14-in. (30.5-cm)

diagonal, monochrome monitor (Ikegami Model PM14-3H). Standard

raster frequencies and an interlaced 30 Hz frame rate were used

with a display resolution of 512 by 512 8-bit pixels. Partici-
pants sat at a viewing distance of 122 cm and entered responses

.1 on a computer terminal keypad.
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Sixteen paid undergraduate volunteers served as the

observers in each of two experiments. The participants were
GV

told that the $10.00 flat fee could be augmented by a potential

$4.00 bonus for good performance. All participants received the

Pmaximum $14.00 for participating in the experiment regardless of

performance.

3.2.3 Procedure

During a preview stage, the participants were shown three

signals. Below each signal a letter was displayed. The letters

A, B, and C were used to designate the three signals the

observers were shown. The observers were instructed to study

• .and remember each signal and associate the signal with the

*letter that appeared beneath it. Following the signals, three

noise fields were displayed for the observers to familiarize

themselves with nonsignal trials. This process was then
repeated a second time. The preview session also served to

S." familiarize the students with the actual response procedures

used during the test blocks. The instructions for the proper

keypad responses were presented on a video monitor which was

located to the left of the observers.

The experiment consisted of six blocks of 96 self-paced

trials, administered in two sessions of three blocks each. Each

session occurred on a different day. Before each block of trials

., for each test session, the preview stage was repeated. In each

block, six signals, three that were shown in the preview, and

three novel signals, were shown. Each signal was presented

three times in each of the four signal-to-noise ratios. There

were 24 nonsignal trials in each block. Signal type, SNR, and

nonsignal trials were presented in random order for each block.
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During each trial the observers' task was to classify the

spectrogram as either noise alone, as a specific "known" signal

(A, B, or C) or as a new or "unknown" signal. This first phase

of responses was to classify between noise alone and any signal

11 condition. Their response choices were "I" for definitely no

signal present, "2" for probably no signal present, "3" for

. probably a signal present, and "4" for definitely a signal

present. If the observers chose response "3" or "4," they were

then asked to identify the signal by pressing one of four con-
tiguous keys: "A" for signal A, "B" for signal B, "C" for

signal C, or "0" ("other") if there was a signal present but it

was not one of the three signals shown in the preview. After

making a response, feedback appeared on the display. If, in

Itruth, the trial consisted of a known target signal A, B, or C;

then the appropriate letter (A, B, or C) was displayed on the

monitor. If, in truth, the trial consisted of a novel target

signal or non-signal (no target present) then the character "?"

appeared on the monitor. When ready to go on to the next trial

the participants pressed the key labelled "continue." Upon com-

pleting the sixth block of trials, observers were asked to com-

plete a short questionnaire regarding the experiment. The
experimental briefing and questionnaire given to each student is

given in Attachment A (Section 3.5).

The sixteen participants were broken into four groups of

four based on which three transients were in the "known" group

(i.e., those which are presented during the preview sessions and

have explicit feedback during testing). The grouping was

selected in order to separate transients t, 2, 3, and 5 that are

4 dominated by harmonic components from transients 4 and 6 which

are not. The grouping was also used to test interaction between

two very similar transient events (I and 2) both of which con-

sisted of three distinct episodes and were positionally located
* S
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at the bottom of the spectogram display. The resulting group-

ings were:

Group Transients in Preview Feedback Set

1 : 1, 2, 6

2 3, 4, 5

3 : 1, 4, 6

4 : 2, 3, 5

The transients in the "preview/feedback set" will be referred to

as the "known" transients for each subject in the remainder of

the report. The novel transients will be referred to as
"unknown." The preview set grouping ensured that each transient

type was used in the same number of known and unknown trials

combined across subjects.

3.2.4 Results and Discussion

3.2.4.1 Detection Results

The four-point confidence scale used by the participants

to discriminate the presence of a transient against the noise

alone, was used to derive the Receiver Operator Characteristic

(ROC) curve for each subject and collapsed across subjects for

each SNR. The area under this curve was then calculated using a

trapezoidal algorithm. This performance measure was chosen to

avoid an unnecessary Gaussian assumption. The results by block

are illustrated in Figure 3-1. The ROC area indicated that the

performance on the detection task quickly reached asymptote and

that the impact of SNR was substantial. Figure 3-2 illustrates

that performance for the unknown transient group is only slightly
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worse than for the known transient group. A mixed design analy-

sis of variance substantiated the significance of SNR (F (3,45)

= 57.S3, 2 < .01) and the known vs. unknown group difference (F

(1,15) = 6.92, 2 .05) with no interaction (F (3,45) ! 1.0).

The performance difference between the known and unknown

signals is shown by block in Figure 3-3. The percentage of sub-

ject responses to either response key 3 (probably signal present)

or 4 (definitely signal present) is used as a performance measure

to illustrate that the learning exhibited at the two high SNRs

for the unknown group is twofold: increased number of hits, and
fewer false alarms. Performance at the two high SNR cases over

the later blocks indicate that subjects did indeed recognize the

unknown transients as valid target signals. It is most likely

that the lack of feedback, particularly at the difficult lower

SNR cases, was the reason for the reduced performance compared

to the known transients. This is supported by the large differ-

ence between performance on known vs. unknown for the two low

SNR cases.

IAt the lowest SNR the significance of ROC area over chance

performance can be obtained by determining the variance of the

chance ROC curve. For equally likely responses across the four

point scale, each of the responses is marginally distributed as

, binomial with p = .25 from a multinomial distribution. The

number of subject trials at a given SNR level for a single block

by group (known or unknown) is 144, resulting in a ROC area
requirement of .5402 for significance at the .05 level (using

the normal approximation). For the SNR = -4 dB case, detection

Performance for known transients was significantly above chance

for blocks 2, 3, 5, and 6 (recall that block 4 was the beginning

of the second day). For unknown transients detection perfor-

mance was significantly above chance only for block 6. The

41
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implication is that the feedback condition provided transient

specific low SNR training, possibly resulting in unique low SNR

strategies. Some transfer to the unknown transients is evident

by the above chance performance at +2 dB SNR and by the slight

Ilearning trend at -4 dB SNR. It is unlikely that the preview

experience was a critical differential factor because the high
. SNR trials for the unknowns served a familiarization (observa-

tion) function similar to the preview trials for the knowns.

Transient specific composition (syntax) is shown to be a

significant factor in the disparity between detection perfor-

mance on known and unknown transients by the nonparametric SIGN

test broken out by preview set in Table 3-1. Although the sig-

- nificance level for the hypothesis that performance is better on

"- known transients for all trials is .0143, it is readily apparent

that strong differences in the previous sets exist. Only two of

the four preview sets were significant, although a third demon-

strated a similar trend (preview set 1, 2, 6 ; p = .1938).

Transients 3 and 5 were common known signals for the two preview

sets that did show significant performance enhancement for the

known condition, and were common unknown signals in the two

remaining preview sets. Transients 1 and 6 were common in the

opposite fashion. The subjects in preview set 3 (known transi-

ents = 1, 4, 6) performed significantly better on unknown
transients (p = .9979 that known performance is greater than

unknown performance, translates into p = .0021 that unknown per-

formance is greater than known since there were no ties). All

three of the unknown transients had strong harmonic components

in only this preview set. Sufficient data is not available to

perform meaningful statistics on each individual transient type
by SNR and by known/unknown grouping. At this time it is impos-

psible to draw any stronger conclusion than that the preview/

J3-14
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feedback condition appears to improve detection performance,

particularly at low SNR, but that transient specific syntax is

an even more powerful indicator of performance.

Table 3-1. Comparison of Detection

Performance on Knowns vs. Unknowns

Preview Set N X P

1,2,6 12 8 .1938

3,4,5 16 15 .0003

1,4,6 16 2 .9979

2,3,5 16 14 .0021

Total 60 39 .0143

N = number of subject/SNR sets

X = number of cases with area under ROC curve greater for
"Knowns"

P = significance level for x (sign test table for N 40, normal
approximation for N 40)

3.2.4.2 Detection Performance Benchmark

The "null" or "background only" data samples associated

with each transient were used to determine the SNR between the

background alone and the Gaussian noise added in each of the

four specific transient peak-to-noise SNR cases examined. This

information was used to determine the performance required by

the best current broadband sensor to match the experimentally

derived transient detection performance. The results of the

transient experiment were translated into a false alarm proba-

bility per watch equivalent to current broadband sensors, and

used a probability of detection of .5 to ensure accurate com-

parison. The transient "bell ringer" assumed in the experiment

3-15



PRESEARCH INCORPORATED

procedure was taken to "autodetect" one possible transient event

for operator confirmation/denial every 670 seconds when trained

-p on noise alone (i.e., it was a bell ringer resulting in over 250

operator decisions per hour for full azimuthal coverage).
9'

The detection performance realized in block 6 of the

experiment for known transients and collapsed over subjects was

41 dB worse than the theoretical best performance for current

broadband sensors. This result is promising considering the

untrained and unscreened subject pool and the nonoptimized man-

machine interface. Two experienced sonar operators were tested

on a single block of trials and demonstrated performance that

was 12 dB better than the subject pool. These results are not

entirely unexpected, given the combination of signal charac-

teristics and display type used. It remains to be seen how the

more complicated transmission loss and ambient noise conditions

in the actual acoustic environment will effect this preliminary

result. The precise performance characteristics of the bell

ringer (or no bell ringer at all) and additional operator work-

load under considerations of concurrent and/or multiplexed task-

ing will also be critical factors determining operational

performance.

3.2.4.3 Classification Results

. Figure 3-4 illustrates the conditional probability of cor-

rect classification by group (known vs. unknown) given detec-

tion. A Spearman statistic test for trend showed that learning

was significant at the .05 level for both knowns and unknowns at

SNR 14, 8, and 2 dB; but not at SNR -4 dB. The most striking

learning was for the unknown group at high SNR as expected from

the detection results. It is interesting that classification

performance at an SNR of 2 dB is grouped with the higher SNRs

for the known transients yet for the unknown transients it is
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grouped with the lowest SNR case. As in the detection analysis,

the feedback condition has shifted the performance curve. The

result in classification is, however, more surprising because

given detection, it is reasonable to predict that feedback that
"crystallizes" the perception of all known signals would comple-

mentarily enhance rejection of all other signals.

Note that chance responses to the four choices will yield

a probability of correct classification by group of .75 for the

knowns and .25 for the unknowns. Note also the responses based

on presentation ratio (perceived by subjects as the a priori

probability) would result in a probability of correct classifi-

cation by group of .50 for both groups. Classification per-

formance of the -4 dB SNR unknowns and noise cases suggest that

classification responses were influenced by the presentation

ratio rather than being pure chance. Noise alone cases that

were false alarms were classified equally into the two groups
(probability of classification of unknown given detection of

. noise was .486). Recall also that detection performance for

unknowns was not significantly above chance at -4 dB SNR. An

alternative explanation is that responses were chance but based

upon an internally developed known/unknown dicotomy. This can

be tested with another experiment where the presentation ratio

between known and unknown is other than i:1. The classification

performance of knowns at -4 dB SNR falls below chance response,

also supporting the argument that classification responses were

not purely chance key presses. Classification performance for

the knowns at -4 dB was better than presentation ratio based

responses supporting the detection performance results that

showed detection performance significantly above chance.

3-18
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Figure 3-5 shows the probability of correct classification

by signal type (i.e., A for A, B for B, C for C) for the known

cases. Chance response is .25 for this measure of classifica-

tion performance, while the presentation ratio based response is

N .167. The relationship of classification performance across SNR

remains the same for performance measured by type or by group;

-however, it is clear that classification performance by signal

o4 type for knowns at -4 dB SNR is better than responses based upon

chance and/or presentation ratio alone. Classification perfor-

mance is also greater than chance responses between only the

known alternatives given classification within the known group

(.22, .22, .17, .20, .21, .27, respectively for each block).

The most consistent feature used to classify as indicated by the

subjects in the questionnaire was the transient position on the

time axis. Fourteen of the sixteen subjects used positional
clues in their descriptions of the signals. This clue is con-

UI sistent with the assumption of a bell ringer automatically iso-

lating and windowing the data, although the consistency of the

window will in fact be sensitive to SNR. Experiment 2 examines

the impact of removing this clue by altering the position in

time of each transient from trial to trial.

The impact of SNR on classification performance given

detection is summarized in Figure 3-6. The drop-off in classi-

fication performance illustrates sensitivity to SNR. It also

indicates that detection does not guarantee correct classifi-

cation. This result is consistent with one group of common psy-
chophysical models of classification as the joint combination

of several independent discrimination judgments. In the currentV
experiment, the independent discrimination judgments would be

differentially sensitive to SNR resulting in classification that

demonstrated associated performance variation with SNR. Each

. transient type exhibits its own unique relationships between

S1

* 3-19
-Sf



PRESEARCH INCORPORATED

1.0F

0.9-

a0.8-

0 0.7-

2 SNR (db):
~0.6- 14

-. 8 4-- -e

.4 --

q~0.5

0J 0.4-

0.3-

0.216

(DAY 1) (DAY 2)

BLOCK NUMBER

Figure 3-S. Impact of SNR on Correct
Classification of Known Transients

3-20



PRESEARCH INCORPORATED

lj 1.0-

%

o do d-

0.8 "a

!00

-' 0.6
LU

II

"- 1402-

TRANSIENT TYPE:
z•1
0 0.4- .

3-21

6

'J 0.2 -

14 82 -4

SNR (db)

4.1

Figure 3-6. Classification Performance of
Known Transients

3-21



PRESEARCH INCORPORATED

discrimination parameters and SNR as evidenced by the different

shapes of the classification performance curve. Other approaches

to explaining the relationship between detection and classifica-

tion have not beeen addressed in this study. An intriguing, but

at this time inconclusive observation is that classification is
more difficult than detection at high SNR, but relatively easier

than detection (compared to chance) at low SNR.

3.2.4.4 Response Latency Analysis

Figure 3-7 shows the mean latency for correct detection

responses (i.e., probably or definitely signal present) and cor-

rect noise responses (i.e., probably or definitely no signal

present) collapsed across subjects. Analysis of variance was

performed by filling the few holes in the individual subject

data (for example no detections at -4 dB SNR in block 2 for sub-

ject 12) with the average latency for that condition across

subjects. Results indicated that SNR was significant at the .01
level (F (3, 45) = 30.86). The responses cluster into two groups

by SNR, suggesting the possibility of two different perceptual/

cognitive detection processes; one at high SNR and another at
low SNR. Subjects supported this hypothesis by describing detec-
tion responses at high SNR as "almost automatic or reflexive"

followed by a classification judgment and the classification

response. On the other hand, at low SNR, the detection decision

appeared to the subjects as intimately linked to the ability to

correlate the perceived pattern with one of the remembered target

signal patterns (including any unknowns already identified by

their repetitive presentation at high SNR). This hypothesis

predicts that the classification latency associated with the low
SNR cases will be relatively shorter than for the high SNR cases

because the classification decision has already been reached.
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To check this prediction, classification latency was

examined as a function of SNR. The mean latency between the

detection response and the classification response is shown

collapsed over subjects in Figure 3-8. Interpretation of the

*classification latency results is difficult because on any given

trial a subject need not make the physical detection response

prior to making a classification decision (i.e., he could make

the detection decision and the classification decision inter-

nally prior to making any physical response). The classifi-

cation latency in these cases is primarily represented by the

time needed to find the appropriate key corresponding to the

desired classification label. (It is assumed the operators

would not arbitrarily adopt a strategy to minimize the classifi-

cation latency by first locating the appropriate detection and

classification keys and then preparing to hit them rapidly in

sequence.) Note that this type of response is exactly what was

expected for the low SNR cases if hypothesis of mutual detection

and classification decision-making at low SNR is valid.

Figure 3-8 demonstrates an increasing trend in classifi-

Rcation latency as SNR drops from 14 dB to 2 dB with a reversal
at the lowest SNR case. The difference in latency with SNR was

significant (F (3, 4763) = 5.18, p < .005) based on an analysis

- of variance. An additional pairwise comparison of the means

(using the normal approximation due to the large number of

samples) indicates three possible groupings of latency shown in

Table 3-2. An optimal grouping analysis (including the best

number of groups) is not practical for the current experimental

paradigm. It is however significant to note that the reversed

trend is significant (the -4 dB SNR classification latency is

significantly lower than the 2 dB SNR case) which lends support

lto the hypothesis of combined detection and classification
decision-making at the lowest SNR. Classification latency for

3-24
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the noise trials was not significantly different than the -4 dB

SNR trials, which also supports this hypothesis. Additional

parameters in the hypothesis are required to explain why the 2

dB SNR case is the only case demonstrating significantly dif-

ferent response latency than the -4 dB case. No speculation is

made of what those parameters might be at this time.

Table 3-2. Significant Grouping of Classification Latency

STIMULUS CONDITION
N (ORDERED IN ASCENDING CLASSIFICATION LATENCY)

14db -4db 8db NOISE 2db

GROUPS NOT
SIGNIFICANTLY DIFFERENT

KThe classification latency results also indicate that

classification response latency nearly reached asymtote by block

2 and the maximum absolute difference between SNR cases is lessa.

than 0.5 seconds. These differences in classification times are

not great enough to alter the monotonically increasing latency

S. '. of detection with decreasing SNR, i.e., the total time to detect

and classify remains monotonically increasing with decreasing

SNR.
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Figure 3-9 reveals additional clues toward understanding

the decision-making process used by the subjects by examing both

hits and misses for signal and noise stimuli. A pairwise com-

parison of the means resulted in significant differences (at the

.05 level) between the groups indicated in the figure. At the

two high SNRs, correct and incorrect responses had identical

latency and this latency was significantly faster than any

responses to the noise trials. This result when combined with

the high ROC area found in section 3.2.4.1 suggests that misses

at high SNR may have often been incorrect physical key strokes

rather than incorrect detection decisions. In other words, a

very short response latency is an indication of the presence of
a signal regardless of the response (signal or noise) actually

entered. This has potentially direct application to MMI design,

- by suggesting that an automatic check of response latency could

be used to direct the operator to doublecheck rapid signal

absent responses for keystroke error.

Examination of the detection latency for noise and -4 dB

SNR stimuli indicates a significant response biased latency.

For these trials, it is only the response, and not the stimulus,

that is correlated to latency. Responses indicating a signal

was present (signal hits and false alarms) took longer than

responses that a signal was absent (signal misses and noise

hits). The low SNR stimulus case can be treated the same as a

noise trial for this analysis because of the low detection per-

formance for this case (ROC area = .529). This simplifies the

question: Why should a false alarm take longer than a correct

noise determination when the stimulus is the same. Two possible

explanations are postulated: (1) additional mental processing

pertaining to classification is done after the detection deci-

sion and before the detection response, and/or (2) One or more

consistent perceptual features occurred in the noise trials that

.- 27
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were called as false alarms and these features did not occur in

the noise trials correctly identified (i.e., the stimuli as per-

ceived by the subject were not the same). An analysis across

blocks illustrated in Figure 3-10 indicates that the response

based latency phenomenon only occurs during the learning phase.

The effect of the known and unknown group on detection

latency is illustrated in Figure 3-11. An mixed design of vari-

ance indicated some significance between knowns and unknowns (F

(1, 15) = 3.21, 05 < P < .10) and no interaction with SNR (F (3,

45) = 1.0). The difference between the known and unknown group

was predominantly at low SNR. Classification latency between

"- groups was nearly identical. A possible explanation for the

pS crossover observed in Figure 3-11 is that once sufficient learn-

ing takes place, the subjects developed a heirarchical classifi-

cation structure using a known vs. unknown decision preceding

the classification by type required for the known signals. The

grouping of all unknowns into a common response set then elimi-

S .nates the time spent remembering additional, finer level classi-

fication rules required for the known group.

% N

.2
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3.3 EXPERIMENT 2

3.3.1 Overview

Experiment 2 was conducted to test the performance of the

participants for transients having no position clues on the

vertical axis. The variable positioning of transient signals

along the vertically oriented time line was devised so as not to

allow the participants to make position related detection and

classification decisions. Below is a comparative study between

the results of Experiment 2 and those already mentioned of

Experiment 1. Conclusions concerning Experiment 1 which are not

further discussed in this section should be assumed to be

consistent with Experiment 2.

3.3.2 Results and Discussion

3.3.2.1 Detection Results

Detection performance in Experiment 2 was nearly identical

*to Experiment 1, with Experiment 2 having a slight reduction in

"* detection performance overall (Figure 3-12). ROC areas did not

increase with each successive block for all SNRs; in fact, only

-4 dB signals show conclusive learning. In contrast, the high

SNRs have decreased ROC areas over successive blocks during each

day. This phenomenon is not completely understood; however,

there are two ways an ROC area can decrease:

(1) False Alarms. An increase in false alarms is

V" expected with an increasingly aggressive strategy to
correctly detect signals.
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(2) Signal Misses. The increase of signal misses for

high SNRs is a difficult concept to explain. For low

SNRs, this increase can be attributed to an increas-

ingly conservative strategy. However, for high SNRs,

signals are difficult to miss, unless, because of the

length of the experiment, the participant has become

increasingly distracted and has consequently lost

concentration.

Unfortunately, it is difficult to conclude whether one or

both are occurring. Also, -4 db signals have ROC areas which

fall below the random threshold of 0.50. ROC areas calculated

for known and unknown signals (Figure 3-13) are nearly identical

to those of Experiment 1, known signals having consistently

greater ROC areas.

The percentage of detection for signal present responses

for known and unknown signals (Figure 3-14) was also nearly

identical to data collected from Experiment 1. A few exceptions

existed: for unknown signals at -4 dB analyzed over blocks, the

percentage of signal present responses was at times lower than

that of noise. This indicates that statistically speaking, the

participant was unable to differentiate between the two. Also,
the percent of signal present responses for noise is consistent

throughout all blocks, whereas in Experiment 1, the percent

decreases over successive blocks. The implications are that

participants in Experiment 2 did not learn from their previous

mistakes (false alarms). In fact, during both Experiment 1 and

Experiment 2 there is no feedback to the participant indicating

false alarms; therefore, results in Experiment 1 which show a
decrease of false alarms over successive blocks (learning) was

unanticipated.
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3.3.Z.2. Classification Results

Classification performance was slightly different in com-

parison to Experiment 1. The percentage of correct classifica-

tion for known signals by group analyzed over blocks showed that

the 2 dB signals were grouped with the -4 db signals, as opposed

* to being grouped with the high SNRs in Experiment 1 (Figure

3-15). This indicates that for Experiment 2, the unfixed posi-

tion of the transients caused the classification performance

threshold to increase, making signals of lower SNR levels

increasingly difficult to classify. Table 3-3 graphically shows

,.' the detection threshold in relation to specific classification

clues (discriminants) for a green SNR. Types of clues would

include different light patterns and their associated positions.

Table 3-3. Classification Performance Threshold

Experiment 1 Experiment 2

Clue 1 Clue 1
S-Threshold For -4 db Signals -Threshold For -4db Signals

Clue 2
,--Threshold For 2 db Signals -Threshold For 2 db Signals

Clue 3 Clue 3

Clue 4 Clue 4
*--Threshold For 14 db Signals -Threshold for 14 db Signals

Clue 5 Clue 5

All clues above each of the thresholds represent clues

that have a greater than 50% chance of being observed, while

those below the thresholds have a less than 50% chance. Clue 2

might represent the position-related discriminants. Also, as

anticipated, for increasing SNR, more clues are observable.

* 10
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For unknown signals, the percentage of correct classifi-

cation by group increased over successive blocks during each

day, indicating learning took place. However, between blocks 3

and 4, a drop in performance for -4 dB signals was found, indi-

cating a loss of memory from the day before. Interestingly

enough, in block 4, the -4 dB signals had classification perfor-

mance less than chance responses. Like Experiment 1, the high

SNRs and low SNRs were grouped separately, with the Experiment 2

classification performance being generally worse than that of

Experiment 1.

Classification performance of known transients by signal

type (Figure 3-16) was identical to that of Experiment 1, with

the exception of the 2 dB signals having slightly worse perform-

ance. This result can also be attributed to the loss of the

positional discriminant.

3.3.2.3 Response Latency Analysis

S.

The latency tinae for classification was different from

that of Experiment 1. To understand the reasons for this

change, review of the cognitive and perceptual processes that

*: occur during the experiment is necessary. The steps of detec-

tion and classification can be broken down into six notional

processes:

1. Recognizing Signal. This step is an internal process
which entails discovering clues which indicate a

signal exists on the screen. One example of this

includes finding "light worms" or unusual light pat-

terns on the screen. For recognizing noise, the pro-

cess entails either not finding any light worms, or
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seeing a uniform distribution of light on the screen.

This is classical detection.

2. Deciding Whether Stimuli is Signal or Noise and With

#What Certainty. This step is an internal process

which involves making the decision whether the stimuli

is a signal or noise, and determining the degree of

certainty associated with that decision.

3. Remembering the Detection Labels (1 - 4). This step

is an internal process which involves remembering the

number on the detection scale correlating to the deci-

sion made in (2) above.

4. Finding the Corresponding Detection Key. This step is

an external process which involves finding on the key-

board the proper key that represents the desired

response, and then pushing that key.

S. Classification of a signal can he accomplished in one

of two fundamental ways:

A.. Feature/Pattern Queued Approach. This step is an

internal process which involves matching stimulus

, T -Ipatterns with trnsient patterns in one's memo-,.

When no patt,.rn' in )ne' s memorv nit I the

timuli , s timu1i i i is -I s i i .i, I nw ,inal.

A# Folli wi g i matkch, the appropri ite .1as i, n
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signals. An example would be remembering signal A
and trying to correlate it with the stimuli. If

the correlation is unsuccessful, signal B is

remembered and tried for correlation. It is

important to note that when the correlation is

made, the name of the signal is already known. If

the stimuli is a new signal, the stimuli will not

be classified as such until all of the known

signals have been individually tried for correla-

tion.

A clear and typical example of these two types of

classification processes would involve a person,

"Person 1," trying to identify a friend, "Person 2,"

from a distance. Classification process A is typified

by Person 1 recognizing Person 2 but not knowing the

person's name immediately. In this case, Person I has

recognized specific feature characteristics of Person

2 but has not yet identified that person as "Bob."

Classification process B is identified by Person 1

qtrying to decide which of his friends Person 2 is.

The process by which Person 1 might identify Person 2

is by thinking of "Charlie" and then deciding whether

there is a correlation between this person and Person

2. If no correlation exists, Person I might think of

"John," and again try to make a correlation. This

process would continue until "Bob" had been identi-

fied. Note that there is no apparent bias for either

of the processes occurring in the experiment. In

fact, there is no indication of any one of the pro-

cesses being usedl exclusively.
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6. Finding the Corresponding Key. This step is an exter-

nal process which involves finding on the keyboard the
proper key that represents the desired response, and

then pushing that key.

If detection and classification were assumed to be inde-

pendent of each other, steps 1 through 4 would always be sepa-

rated from steps 5 and 6. However, the latency results of both

Experiment 1 and Experiment 2 indicate some classification pro-

cessing occurring during the detection phase of the experiment.

N, The latency of the participant to detect signals and noise
(Figure 3-17) was slightly different from the results in Experi-

ment I. The differences are twofold. First, between block 3

and 4, the mean detection latency for the low SNRs increased,

indicating a relapse in performance (from day to day) to differ-

entiate quickly between noise and transients. It is noted, how-

ever, that the mean detection time does generally decrease with

successive blocks, with block 6 showing the best results.

Second, the mean detection time for 2 dB signals was consis-

tently less than that of Experiment 1. The implications of this

difference are tied to the above hypothesis concerning the clas-

sification performance threshold. Because the 2 dB signals are

more difficult to classify correctly (Figure 3-15), one would

expect the time spent trying to classify the signals to be

greater (as shown in Figure 3-18), as well as the time spent

trying to detect them. However, Figure 3-17 shows a decrease in

the mean detection latency compared to Experiment 1. The
decrease in the mean detection latency (2 db signals) between

Experiments 1 and 2 indicates that there is a tendency for the

participant to separate the detection from the classification in

Experiment 2, thereby making detection faster and classification

slower. Both Figure 3-17 and Figure 3-18 support this hypothesis.

3-43
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The other difference in the mean detection latency data is

that noise has greater values in comparison to Experiment 1.
LNote also that the mean classification latency of noise (Figure

3-18) dropped from 1.15 seconds in Experiment 1 to 0.85 second

in Experiment 2. These data represent the other side of the

classification latency issue. At some point, detection becomes

so difficult that the participant is reluctant to answer posi-

tively to a detection until a certain amount of classification

processing has taken place. This would imply that parts of step

S (described above) would occur before step 2.

6. The same hypothesis can be applied to the detection and

classification latencies for -4 dB signals. As is apparent in

Figure 3-17, the -4 dB signals have a significantly greater

latency for detection than the other SNRs. It is important to

note that detection latency should increase with the decrease of

SNR, simply because the signal is more difficult to see. How-

ever, the -4 dB signals have abnormally greater detection laten-

ON cies, indicating additional internal processing. Likewise,

Figure 3-18 illustrates the mean classification latency for -4

dB signals as being less than expected. Because more classi-

fication processing is occurring during the detection phase of

• )the experiment, less time is necessary for classification during

the classification phase.

"Ii
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3.4 GENERAL DISCUSSION

The analysis of Experiment 1 and Experiment 2 has lead to

seven significant results:

1. Transient detection and classification performance are

highly independent. Both are very sensitive to SNR.

2. Novices were able to rapidly detect and classify un-

known transients, including those with significantly

novel structure. This implies rapid and accurate

internal representation and recognition of pure noise

backgrounds and/or identification of replicated

features different from the white Gaussian noise back-

ground.

3 3. The feedback given on known transients resulted in

better performance at low SNR when compared to perfor-

-. mance for unknown transients. This was in spite of

repeated observation of the unknown transients at high

I. SNR, and associated excellent performance.
.4

4. Performance varied widely from transient to transient.

This transient specific structure (syntax) effect was

much stronger than the known vs. unknown group effect.
".p

S. Novice detection performance against acoustic tr:in-

sients in the experiment was comparable to theoretical

best operator detection of broadband signatures using

conventional sensors. Fxperienced sonar opet-ft)rs

outperformed the novices by 12 dR.

S4A



"=WWvVWWWWWVI W IU NW ~ WWWWEW NUNWWW W .N- KMFE' MMM FI~ iA J r.,vWWX ~ U ju. UXW~~-

PRESEARCH INCORPORATED

6. Human detection and classification decision-making are

interrelated in fundamentally different ways for high

and low SNR transient signals.

7. The variable positioning of transient signals in Experi-

ment 2 caused decreased detection and classification

-: performance, showing the participants' reliance on

position related clues.

Ike
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3.5 ATTACHMENT A: STUDENT INSTRUCTIONS AND POST-EXPERIMENT

QUESTIONNAIRE

3.5.1 Instructions

The experiment you are about to start is a visual detec-

tion and identification task. You will be payed $5.00 per day
for your participation in the experiment with a possible bonus

of $2.00 per day added for good performance. Before you begin

each block of trials you will have a preview session to famil-

iarize yourself with the testing procedure and the target sig-

nals. The target signals will consist of patterns of bright

patches in a background of a randomly specked display. You will

examine three different target signals. Each signal displays

its own unique pattern of bright patches on the video monitor.

These three signals with different patterns are labelled A, B,

or C. Try to remember each pattern and associate its designated

label A, B, or C. During a preview session you will also

examine three displays showing only the background and not con-
taining any signal. These non-signals appear uniformly speckled

without any bright patches indicating a signal pattern. I will

guide you through the actual testing procedure during the first

preview session.

Once the preview session is completed, a formal testing

session will begin. During this testing you will be presented

these same three signals (A, B, and C); some other new signals
Swith different patterns; and some displays with no signals. The

brightness of the signals will vary; blending in some cases into

the speckled background. In some cases signal patterns will be

easy to see; in other cases, very difficult to discern from the

nonsignal speckled background. On each of these trials, you
will be asked if a signal is present. You will respond by

N
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pushing the appropriate number key as (1: definitely no signal;

2: probably no signal; 3: probably a signal; 4: definitely a

signal). If you respond with 3 or 4 (probably a signal or

definitely a signal) you will be given an opportunity to iden-

tify which of the signals you think you are seeing. In those

cases you will respond by pressing the appropriate letter (A:

for signal A; B: for signal B; C: for signal C; and 0: for

other or new type of signal).

After you make your response, feedback will appear on the

display. If, in truth, the trial consisted of a known target

signal A, B, or C; then the appropriate letter (A, B, or C) will

be displayed on the monitor. If, in truth, the trial consisted

of a new type target signal or non-signal (no target present)

then the character "?" will appear on the monitor. When you are

ready to go on to the next trial, press the key labelled

"continue".

After 96 test trials are completed, your screen will

indicate that "block 1" is over. At that point, I will come in

to answer any of your questions regarding the experimental pro-

cedure. You will then go on to "block 2." The procedure will

consist of the same preview followed by 96 additional trials.

After "block 2" is completed, a final "block 3" will be per-

formed. Each block is expected to take 15 to 20 minutes; so the

entire session will last about 1 hour. The second day of test-

ing will proceed in a similar fashion to the first: three more

blocks of previews followed by testing. At the end of the

second day of testing, you will be asked to fill out a brief

questionnaire describing your experience.

a 3-50
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Your performance bonus will be based on your ability to

detect and correctly intensify target signals. Remember some of

the cases are extremely difficult--do not be discouraged--do the

best you can.
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3.5.2 POST EXPERIMENT QUESTIONNAIRE

1. Did you see the target signal every time it was there?

m Never 1 2 3 4 5 6 7 8 9 10 Always

2. Did you see any target signals when none were actually
present?

Rarely 1 2 3 4 5 6 7 8 9 10 Often

3. How did you decide that a target signal was present?

4. How well do you think you correctly identified the target

signal?

SType (A,B,C, & 0)?

Poorly 1 2 3 4 5 6 7 8 9 10 Extremely Well

5. How did you decide on the identity of the target signal"

6. Briefly describe target signal Type A:

U .

' 7. Briefly describe target iignal Type B:

8 Briefly describe target ;ignal Type C:

- 52
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9. Briefly describe any new (i.e. "other") target signal

type(s) observed:

;e 10. Briefly describe the speckled background:

4

II. How often did you use an internal (remembered) verbal
1,tV description of the target signal to make decisions?

Never 1 2 3 4 5 6 7 8 9 10 Always

12. How often did you use internal (mental) pictures to make"" ~ decisions

PNever 1 2 3 4 S 6 7 8 9 10 Always

13. Please make any comments or suggestions:

THANK YOU FOR YOUR PARTICIPATION.
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4.0 AUTOMATIC CLASSIFICATION RESEARCH

The purpose of this feasibility research is to test :I -m-

putational theory of an Asynchronous Syntactic Pattern (iSPj

sensor. Its purpose is to sense the physical features of

transients in real time and to interpret complex sounds as

serial sequences of pulse features, i.e., as syntax or as

syntactic events. In this sense, the ASP sensor is a transducer

of physical sensors, transforming their infinite sequentiall1
p.,

sampled data to a finite set of transient features which repeat

from time to time, forming a structured syntax with implicit

meaning for human operators with classification objectives.

The patterns are represented top-down as a generic classi-

fier system hierarchy. Different types of pulses are considered

as independent entities. These entities broadly describe the

transient in general terms. As one moves down the hierarchy,

each generic entity is further described in terms of feature

attributes. Moving further down the hierarchy, each feature

attribute is described in terms of a vector of feature attribute

values. This vector of feature attribute values is referred to

as a feature pattern. At the bottom of the hierarchy is syntax.

The simplest representation at this level are binary state vari-

ables representing time-ordered excitations and inhibitions of a

feature pattern. More complex syntax, involving structured

pattern sequences, i.e., a rule-based grammar, is handled at a

higher level by creating a symbol for each syntax. At the

bottom, it is either singular or a bit mapped time pattern,

commonly known as a binary state variable. There are many

" advantages to this kind of transient representation, which is

beyond the scope of this report.

4-1
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P At the top ijf ,ur :lassifier svstem hierarchy, there are

four discrete pulse entities. These are (1) leading edges, f2)

.K orrelated pulsed carriers, (3) singular pulsed carriers, and

(4) aperiodic pulses. This selection is in no sense optimized,

but nevertheless represents a rational beginning for the feasi-

bility analysis. In simplest terms, leading ledge pulse trains

are approximately step functions. They start by a jump in power

which is maintained for a variable period and either fade or are

abruptly turned off. Pulsed carriers are processes which are

periodic within randomly accessible time windows, and which have
at least three cycles of wave motion. Pulsed carriers may be

arbitrarily frequency modulated, amplitude modulated, or time

patterned. Correlated pulse carriers are entities encompassing

one or more identical replications of a feature pattern. The

replications may occur on any time scale, may be predictable

periodic occurrences, or may be multipaths with few visible

replications. On the time-scale of available data, singular
* pulsed carriers are those with no apparent replications. The
-', apparent singularity of events may not be real; the strategy is

to hold singular events long enough to exhaust the possibility
|. of associating their feature pattern with known groups, with

subgroups split off of known groups because of ambiguous identi-

fication, or with other singular events to form a new group.

"" Aperiodic events are residual events which fail the test for a

minimum number of cycles of wave motion. The implication is

that these events are more critically damped. Many passive

transient signals may fall in this category.

4.1 RESULTS OF AUTOMATIC CLASSIFICATION PROCESSING

The Asynchronous Syntactic Pattern (ASP) sensor algorithm
- ,' was programmed in FORTRAN for the Cray computer in order to test

-, its feasibility as an aid for computer assisted classification

4-2
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p

p

of acoustic transients. The data was run on the Naval Research

Laboratory Cray computer. This data made it possible to make

real progress in evaluating the feasibility of the ASP sensor as

a transient classification tool.

The ASP algorithm starts at the top of the classifier

hierarchy by first sensing leading edges by the character of the

pulse at the beginning of such events. Six such events were

detected in the first six seconds of data and these will be

described in more detail later. If the leading edge discriminant

is false, ASP senses impulsive transients with at least three

cycles of wave motion, which are called pulsed carriers. All of

the pulsed carriers detected in 6 seconds (about SO,000 data

points) are shown on Table 4-1. The attributes of the table are

record number, data point number, and four feature pattern attri-

butes. Those are each pulse's amplitude, average frequency

(normalized to one at sample rate /2), pulse shape (from 0, mini-

mum phase to 1, maximum phase delay of peak energy of the pulse),

and frequency shift (normalized average frequency difference

between decadent back and ascendent front of the pulsed carrier;

positive means rising carrier frequency). Table 4-1 shows that

ASP reduced the raw data from about 50,000 data items to about

500 data items.

rr Feature attributes of pulse shape, frequency shift and

average frequency are taken as highest ranking keys for auto-

matic classification of pulsed carriers, i.e., for grouping

identical feature patterns in a three-dimensional feature space.
This was implemented by transforming the three columns of key

features in Table 4-1 to an integer between 0 and 25, inclu-
sively. In that way we converted the key discriminants into an

alphabetic string for efficient sorting of events with similar

feature patterns.

4-3
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Table 4-2. Pulsed Carriers Sorted by Feature Pattern

SORTE~D D0l;E(3OP'-v iF ENSICONS A&E o E Y EATURE AT TK bUYIS FQPf LLASSIF 4-04 1)#4

9 F'ILENAMqE AND EXTENSIUN FORP9ATt r5t vvvv.FSF

Ft pulse shape Si frequency shl#t Ft average #requent,

Feature attributes F. S. AND F transformed to ranq - to
alphabet character representation in file extension sort@v

The content of the files arrival time in seconds of tme givlss

PCt pulsed carrier -i record 0 VVVY1 timedata 0

.ALI files: ez64
AW files Ps: pc99
PPE4A files: pc 790Z.-6

* CHX files: PC99117-
.CJO #ile0: pcGZ4Z

* DGF files: PcSB'I'.987
.0GW filos: pce7Z-62 pc89n4
.DIN files: PC87l'19
Al 0 files: pce(.1l6l9
.EZO files: PC911:98
.FLF files: pc922719
.GCO files: pc887Z24

~ HEM files: pcB41771
* HFW files: pceB88'.i' pc867449 pc87').'49 pc870122 pcG824l4

.HFG files: PcB418
ICR files: pi:90oi749
.IHi files: PC159

.IHN files: pceQ1876
.IHP files: pc867825
. IIZ files: PcB77C8
.IMX files: PC89l5
.JJT files: pcI361227
.JLI files: pc9('1245

* JMW files: pc9'.)10i24
. I;A files: pcB66-67Q)
.i-AQ files: pce62174

Vr VX files: P c 9 o.- - e4
i-HN files: pc9l-;46'
1.If.~ files: pc 9 2 1C7'3

4-8
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P Table 4-Z MCont)

01160 sis , -'4403 pr t3.
.NM stlest P 1:17

.LFM 4119 vCtjI -

.LFW 4 1les I o l 1 "i4' PC 131 7, 1
.LHA file s: I j~ V i'71 1
.LLO 4 1IaslP,. :!1
L OD fies k Ivot PC : 14,
"140 6 1 1es:t CcF

."W4 T 4 1 s P

.N, 0 i1los: Pc8. -446 PC819 7 Pc 8l11lu98 PcBl.137

.CLO 4 ilos: Pc042&-i' PcB 7 l164 pc9117to7

.OMF 4 1los: pcg4lq&2?
*000 fI Iasi P,C13:8,
.FAG file%: OCS616
.FCo fils: pC 8 7 Z( p6
.FG filIas: C7-1
.FND files: PC9l--:!
*FOQ #ales: QC9l"'l_
.F'OZ 4il0s: pc79l5'7
. FQW file%: pc8.l15-
.OFM files: pcBl-99:
.L'FM files: pcB.41,194
.000 fil1es: pc6'.1.'64 pc6)4o 18
-RIO files: Pc8777569 RIW files: PC63610-6
.RT1 files: PcB2144Z
.RUo files: pc9il8'o:7
Sol files: pc 790Q-97
.STR files: Pc61u-647
.TJN files: PC87_.274

9r .TVL files: pc(376 5
TMO files: pc7T97-9-
TrNG files: pce.):'(3)4 pc91.~21
.rNO files: pc'97Z47 pc13C_.2l95

v .rFPM files: pc797477
.UOL files: p c 8 ( , 7 70
.VUO files: pc921742
*WWK files: Pc7922761
.YSQ files: Pc842519
.XZSO files: pcE31)50:8 pce(.-c.-)5
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S Table 4-3. Multiple Arrival Time Pattern of
Correlated Pulsed Carriers

MULTIPLE ARRIVAL TIMES OF IDENTICAL FEATURE PATTERN

FEATURE PATTERN TIME (SEC) (From start of file)

DGW 4.42-3625 s.s60s

HFW 3.93462S 4.01512S 4.102125 4.1112S 4.90975

KMQ 0.82425 2.33575

LFW 3.77187S 3.79762S

NKQ 0.81775 0.911625 1.16125 1.291125

OLO 2.88S 4.2415 6.358625

QQO 0.5475 1.0142S

TNG 0.5225 5.9472S

TNO 0.292875 0.78S37S

ZSO 0.575S 0.891375

.

] '4

01%.1
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sonar, pumps, engines, propeller cavitation, and other cyclical

processes.

An important feasibility result of this research is the

possibility of using a transient feature sensor to resolve

intermittently sensed interfering harmonic beat patterns. This

may have important practical significance complementing more

conventional spectral techniques, to be discussed later. One

obvious implication is the much lower recognition differential,

as compared with a conventional power detector. The essential

difference is that features can be sensed intermittently anytime

that the feature is dominant with respect to other interfering

stimulus. Once it is sensed, it can be recognized from replica-

tive measurement of its feature attributes.

In order to determine how the selected feature classifica-

tion keys are distributed, i.e., whether uniformly distributed

over their range or concentrated, we prepared Table 4-4. The

pulse shape shows some concentration between H and T, with some

small bimodality at D. The Frequency Shift shows concentration

between F and Q. Frequency is multimodal with concentrations at

K, M, 0, Q, and W.

The two principal classification keys are pulse shape and

rfrequency shift. These features were selected as keys in the

order considered most invariant with respect to the scale of

source strength and propagations and also, on the physical

grounds of being independent features. To test this idea, we

plotted in Figure 4-1 occurrences of scaled (P, S) values in

feature space. In the range of feature space where these

attributes are concentrated, they appear to be random and

uniformly distributed, i.e., not functionally related.

4-11
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Table 4-4. Single Discrete Arrivals of Patterns
(Multiple Arrivals Not Counted)

NUMBER OF OCCURRENCES
OF FEATURE PATTERNS

PULSE FREQUENCY AVERAGE PATTERN

. SHAPE SHIFT FREQUENCY (SCALED)

2 3 2 A

1 1 0 B

2 3 0 C

4.. 4 1 2 D
2 2 0 E

1 S 2 F

S *-s1 3 2 G

3 9 0 H

6 6 0 I

3 3 0 J

7 3 10 K

7 5 2 L

L 2 6 7 M

- 2 4 4 N

3 4 9 0

7 3 1 P

3 4 14 Q

4 0 3 R

2 2 0 S

6 2 2 T

1 2 0 U

1 0 0 V
1 1 7 W

0 0 3 X

1 0 0 Y

11 3 Z

4-12
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Figure 4-1. Relationship Between Frequency
Shift and Pulse Shape
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Multiple correlations obtained using these two features

are shown as numbers greater than one in Figure 4-1. No obvious

relationship or modality can be seen, although there is not
enough data to be sure one way or the other. What can be seen

is that there are 33 correlated pulses using P and S as keys.

*This is compared to 26 correlated pulses, using three features

in the order P (Pulse Shape), S (Frequency Shift), and F (Aver-

age Frequency) as feature correlation keys, shown in Tables 4-2

and 4-3.

This means that adding Frequency as a feature removed about 20%

of the (P, S) correlations as possible errors, suggesting an

approximately 801 correlation of the (P, S) feature and actual

* .(from targets) correlated pulses. Absolute interpretation of

- "(P, S, F) actual correlated pulses is not possible to estimate

.without a priori knowledge. It is expected to be correlated

S more closely with actual pulses than is the lower ranking (P, S)

feature pattern; especially considering the plus or minus 2%

tolerance required for associating the frequency feature to two

or more pulses (covering approximately one half octave of fre-

I,. quency band). Based on the (P, F) feature sense correlated

pulses, there were 36 apparent correlations; on (S, F), 38

-. apparent correlations.

One important aspect of adding features is that additional

. pulses are missed and true correlations are fragmented, in

exchange for much lower probability of falsely associating

' :pulses. For that reason, care must be taken in expanding the

dimension of feature space; in carefully setting the sensitivity

of features; and rank ordering their application as key attri-
butes of correlated pulses. The features used in this feasibil-

ity study must be optimized based on empirical analysis of a

larger data base.

'4
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On detecting a set of correlated pulse carriers, other

information is obtained which relates to a consistent interpre-

tation of correlated pulses. Important to the identification

harmonic patterns are the sequence of arrival times observed and

associated with a feature pattern; to the identification of

multipath arrivals time delays consistent with ocean depth and

range. Amplitude information, as shown in Table 4-1, is

obtained with each correlated pulse. Amplitude can be used to

gauge the source or propagation distance, given appropriate

environmental modeling.

* ' 4.2 INTERPRETATION OF CORRELATED PULSE CARRIERS

We have demonstrated that an Asynchronous Syntactic
.e, Pattern (ASP) sensor can efficiently reduce acoustic data to

S." rlong leading edge transients, modulated narrowband pulsed

carriers, and broadband transients. One interesting observat-

made with the pulsed carriers was that their random occurren, -,

U could be easily sensed as transients at much lower amp1:t~j,!

levels than the transients used in the Psychophysical frxc-

ment, i.e., at levels 15.5 dB less than those used in thi,

experiment. This was possible because the transien ,,

tinguished, not in the usual sense of sudden large ar--

" but on the basis of features similar to those useJ " -

classificaiton. These were pulse shape, measure'""
, ~. time relative to duration of the transient*,

'emeasurement of chirp characteristic frcpic.

quency of the carrier.

5 The only requirement for identif'w: % .

feature patterns is that the ,,.vet

occasionally dominate ) fe-w IP

* ' s possible because thk, me i,, .

..
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designed to be measured effectively at emergent peak values and

at very low recognition differentials. Alternatively, coherent

stacking may be used to pull the transient out of the noise.

Those feature patterns which replicate very precisely can be

used to identify and very precisely measure source characteris-

tics.

The algorithm for carrying out this experiment of feature

correlation was performed as part of the Cray Processing. It

simply consisted of a linear stack holding the last 16 pulse

carriers. If a new correlated pulse gets pushed onto the stack

soon enough, it will correlate based on the near identity of the

three measured features. This is accomplished on a three by

sixteen element stack. The frequency and frequency shift cri-

teria was set at 2%; the pulse shape at 5%. Twenty-two correla-

tions obtained by the Cray Experiment are shown on Table 4-5.

One immediately takes note of the dominance of two different

pulsed carrier wave trains. The only exception was the corre-

lated pair on record 87 point 1164. Its feature pattern is well

separated from the two pulse trains. With a time delay of 1.3

seconds and an apparent reflection coefficient of 0.9S, it could

conceivably be a multipath event.

The pulse carrier wave trains were further analyzed to see

if some information about the source could be obtained. This

was done by determining the extent that the pulse train is

periodic, and therefore indicative of a harmonic pattern emitted

from the source. By dividing one of the time intervals by an

integer and taking that value as a prediction time period

between pulses, the repeat time was tested by division into each

aof the observed time delays. This was repeated by trial and

error until numbers very close to integers were obtained for

4-16
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Table 4-5. Correlated Pulse Carriers by
Real-Time Stacked Feature Correlation

RECORD POINT REPEAT AMPLITUDE AVERAGE PULSE FREQNCY
TIME FREONCY SHAPE SHIFT

83 1920 0.000 5397. 0.3500 0.5000 -0.1000
0.7340 5397. 0.3500 0.6500 -0.0989

86 1709 0.0000 8848. 0.4375 0.5000 -0.1250
0.0247 11211. 0.4375 0.5000 -0.1250

86 3449 0.0000 6368. 0.4375 0.3750 -0.1000
0.0773 7440. 0.4375 0.3750 -0.1000

87 49 0.0000 8912. 0.4375 0.3750 -0.1000
0.0835 6368. 0.4375 0.3750 -0.1000
0.1608 7440. 0.4375 0.3750 -0. 1000

87 122 0.0000 6992. 0.4375 0.3750 -0.1000
0.0088 8912. 0.4375 0.3750 -0.1000

0.0923 6368. 0.4375 0.3750 -0.1000
0.1696 7440. 0.4375 0.3750 -0.1000

87 851 0.0000 9557. 0.4375 0.5000 -0.1250
, 0.3886 8848. 0.4375 0.5000 -0.1250

0.4133 11211. 0.4,375 0.5000 -0.1250
87 1164 0.0000 6549. 0.3684 0.5789 0.0114

1.3022 6880. 0.3684 0.5789 0.0114
88 2414 0.0000 9984. 0.4375 0.3750 -0.1000

0.7753 8912. 0.4375 0.3750 -0.1000
0.97361 74.40. 0.4375 0.3750 --0.J000

89 3524 0.0000 7611. 0.4375 0.2500 -0.08332
1.0914 5637. 0.4-75 0.2500 -0.0877

26 3058 0.0000 6923. 0.3889 0.5556 --0.0250
0.0416 5936. 0.3889 0.5556 -0.0250

80 3197 0.0000 6315. 0.3889 0.5556 --0.0250
0.0901 6517. 0.3889 0.5556 -0.0250

81 1098 0.0000 6640. 0.3889 0.5556 --0.0250
0.2396 6315. 0.3889 0.5556 -0.02no
0 '.3298 6517. 0.3889 0.5556 -0.0250

81 2137 0.0000 7515. 0.3889 0.5556 -0.0250
0.1247 6640. 0.3889 0.5556 -0.0250
0.3643 6315. 0.3889 0.5556 -0.0250
0.4544 6517. 0.3889 0.5556 -0.0250

150 2283 0.0000 3205. 0.3889 0.5556 -0.0250
0.9024 3659. 0.3889 0.5556 -0.0250
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each observed repeat time differential. A basic program for

performing this analysis is given in Figure 4-2.

The result obtained in predictive timing of correlated

pulsed carriers is shown in Table 4-6. Referring back to Table

4-3 showing multiple arrival times, we note the close similarity

of HFW and LFW. The matrix of feature correlated time differen-

tials indicated that the predicted arrival times of HFW and LFW

were on the same wave train. This amounted to a total of 12

correlated time differentials over a period of about 2.5

seconds. The other pattern, NKQ, was approximately 6 dB weaker

and occurred more sporadically than HFW. It was sensed only 8

times; 6 times over a period of one second, but only 8 times

over the entire observation period of about one minute.

The repetition time of the HFW pulsed carrier is 3.0884

msec; of the NKQ pulsed carrier, 3.4693 msec. The standard
deviation of pulse timing errors is .05 of the repetition time
for NKQ; .106 for HFW. The apparent precision of a pulse train

model for correlating pulses is .2 to .4 msec. The average

period of NKQ is .643 msec; of HFW, .571 msec. The possibility

of estimating pulsed carriers by a repetition time delayed wave-
form stack or by matched filtering is not beyond reasonable
bounds.

. 4.3 INTERPRETATION OF LEADING EDGE TRANSIENTS

The leading edge transient detections were the type of

transients used in the Pilot Psychophysical Experiement. They

were the largest transients on the NSWC tape; on an average

15 dB larger than the pulsed carriers described in the preceding

section. We used them as examples of extremely long (about 0.1

to 1.0 second) transient episodes. By contrast, the pulsed

4-18
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1 1 ---- NAME: "FULSENUM -- ---------------------------------

3 'J - INTGR FRAC OF F (1) F(I) ORDERED SMALLEST TO LARGEST

4 'PERIOD DIVSR MAKES G(I) INTEGER: REPEAT IS REFINEMENT TRIAL ERROR

5 DIM F(64), G(64)

10 INPUT N

20OFOR I = 1TO N

25 INPUT F(I)

30 NEXT I

33 INPUT J

35 IF J -0THENGOTO 70

37 PERIOD F(1)IJ :PRINT J,PERIQD
40 FOR 1 1TO N

45 GOI) = F(I)/PERIOD :PRINT G(I)

SO5 NEXT 1
60 GOTO 33

70 INPUT SCALE :REPEAT - PERIOD * SCALE :PRINT PERIOD:SCALE.REPEAT

75 IF SCALE = 0 THEN GOTO 33

80OFOR I =1TO N

85 G(I) =F(I)/REPEAT :PRINT F(I),G(I)
90 NEXT I

V 95 GOTO 70

99 END

Figure 4-2. Basic Program to Calculate Period of
Repetition for Intermittent Correlated Pulses
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Table 4-6. Analysis of Feature Correlated
Pulsed Peak Delay Time Differentials

PULSED CARRIER PEAK TIME DIFFERENTIALS

NKQ: Estimated Repetition Time = 3.4693 Msec

Time Differential Peaks Differential

X",

.0416 sec 11.99

.0901 25.97

.1247 35.94

.2396 69.06

.3298 95.06

.3643 105.01

.4544 130.98

.9024 260.11

HFW LFW: Estimated Repetition Time = 3.0884 Msec

Time Differential Peaks Differential

.0088 (round off error) 2.85

.0247* 8.00

. .0773 25.03

.0835 27.04

.0923 29.89

.1608 52.07

.1696 54.91

.3886 125.82

.4133* 133.82

.7753 251.03

.9361 303.10
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Vcarriers were about 2 msec entities. We observed 6 of these

signals over a time period of about 2 minutes.

The experiment with Leading Edge transients consisted of
Wsensing the front edge of the signals with a step function; and

measuring the features of the front edge of the signal. These

are shown for the six signals in Table 4-7. The leading edge

feature values indicate that event 3 and 4 are closely

correlated based on pulse shape, frequency shift and amplitude.

They are not well correlated with frequency.

An important part of the experiment was concerned with the

512 nodal binary state variable of energy excitation. We were

interested in this as a very computationally efficient and

simple syntax for very long complicated signals. The sensi-

tivity in correlating signals 3 and 4 from the binary state
variable was remarkable, as seen in the binary correlation

matrix in Table 4-6. The correlation is 100% in terms of bit

masking of event 4 on 3. The result is slightly complicated by

the fact that event 3 has 12t more bits than event 4. The

typical correlation between patterns nearly matched in number of

bits is between .3 and .6. The precise binary state variable

pattern match between 3 and 4 is based on nearly the same time

span with signal certainty uniformly turned on. One interesting

fact is the apparent consistency between feature patterns of

events 3 and 4 based on pulse shape, frequency shift and ampli-

tude measurements of the leading edge, and the bit mapped long

complex signal. One is lead to speculate that event 3 and event

4 are similar entities.

4-21
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Table 4-7. Leading Edge Transient Feature Pattern
and Binary State Variable of Energy Activation

N RECORD POINT AMPLITUDE AVERAGE PULSE FREONCY
FREONCY SHAPE SHIFT

1 53 2892 16613. 0.2381 0.3910 -0.0192
2. 119 177 7627. 0.1250 0.9062 0.2299
3 130 1905 32325. 0.3437 0.08625 -0.1667

S 4 135 1296 32752. 0.1765 0.0882 -83.1720
5 160 1634 9349. 0.1667 0.667 03.1250
8 306 2148 29081. 0.1351 0.8919 0.4091

N ENERGY ACTIVATION SENSORY STATE VARIABLE

S i e6060(8681C000E03-EE007F6006000OOFE006FFDFEOOOI 3FFFE0840000000000
FFFCBOOA3-DFFFFFBFFFE4000a4W2BIFFFFFFFFDA46 13020210000000000000000O

2 BO00000200000O00009C000000000040000000EBF204000000000000W00
3A54000000000 1 6FEDFFF6DA4t2O I20820000000000000000000000040000 10

I 3 A8COFOOOFF 600000FFFFCOO000000000FFFFFFF FF00000000000000000000000
FFFFFFFFFFFFFFFFFF20 0000 000 00000000000000000000000000000

4 88C0F000FFO00000FFFF0000OOOOOOFFFFFFFOOOOMOOOSOOOOOOOOOOO000o
*FFFFFFFFFFFFFFFF400 0000000000000000000000

5 8000800081 802000E0A77E401 D82 2000FC01 EDBFBFFE300003F7C49E4D800000
FFFOOI 17FDF7EFFFDFFFFFFD5FA80000015FFFBFF9B6DBFDBFEE200000000

6 800000000000000000000000000000oooooooooo00oowoooo00l0

BINARY CORRELAr IONS

j4 5 6

1 166 37 96 81 1203 1

2 37 69 23 13 54 6

3 96 2-m 145 129 90 I'll

4 81 13 129 129 7 ? 1.3

5 1128 54 90 79 234 13

*06 13 8 13 13 13 13
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4.4 CONCLUSIONS

NThis preliminary examination of data, indicates that our

theory of an Asynchronous Syntactic Pattern (ASP) sensor is

potentially capable of reducing synchronous data by at least a

factor of 100. This is assuming that all of the singular fea-

ture patterns would be retained and processed. Given the

requirement of interactive processing of only correlated events;

and the feasibility of machine correlating patterns and syntax

by our algorithm, the reduction factor of data storage and pro-

cessing is of the order of 500. Beyond computational feasi-
bility and data reduction possibilities, we have shown that use-

ful information about the source can be obtained and conveyed to

the human classifier. An automatic transient processor with
empirical AI and self-learning capabilities will probably be

essential in meeting future combat requirements of accurate

S classification and rapid human response. It is interesting to

note that two long complex transient episodes were highly corre-

lated on the basis of a bit mapped syntactic state variable, and

independently on the basis'of a feature space representation

only operating on the leading edge of the long transient. Pulse
shape and frequency agreed within a tolerance of 3%; and ampli-

-. tude agreed within a tolerance of 1%. The bit mapped energy

excitation masked 100t.

A . In pushing ahead with ASP, we plan to implement a neural

network model for the purpose of recognizing noisy syntax pat-

terns, for self-learning of new patterns, and for automatic

recall. Automatic recall could be used for recognizing hybrid
patterns obtained by appending the binary state variable with

human generated form entries. We should continue exploring the

capabilities of feature attributes as a front-end hierarchical

feature sensor. In particular, we should continue to explore in

depth the extraction of additional useful information about the

source.

4-23

Z,



W1 Wj ME"Am . ..WX

PRESEARCH INCORPORATED

5.0 REFERENCES

1. Sax, R. L., "Stochastic Noise and Broadband Simulation

Algorithms," Presearch Incorporated, Arlington, Virginia,

1983.

Z. Sax, R. L. and Goodman, J. D., "Transient Acoustic Signal

Detection and Analysis," Presearch Incorporated, Arlington,

Virginia, 1983.

3. Sax, R. L., Goodman, J. D., and Snook, S. E., "Transient

Acoustic Signal Processing Algorithm Evaluation and Test

Results," Presearch Incorporated, Arlington, Virginia,

1983.

S4. Sax, R. L., Goodman, J. D., and Snook, S. E., "Transient
Acoustic Signal Processing Algorithm Evaluation, Addendum

1, Noise Tests," Presearch Incorporated, Arlington,

Virginia, 1984.

5 Howard, J. H. Jr., Silverman, E. B., "A Multidimensional

Scaling Analysis of 16 Complex Sounds," Perc lion &

Psychophysics, vol. 19(2), 193-200, 1976.

6. Howard, J. H. Jr., Ballas, J. A., "Syntactic and Semantic

Factors in the Classification of Nonspeech Transient

* Patterns," Perception & Psychophysics, vol. 28, 431-9,
1980.

7. Howard, J. H. Jr., Ballas, J. A., "Acquisition of Acoustic

Pattern Categories by Exemplar Observation," Organiza-

tional Behavior and Human Performance, vol. 30, 157-173,

1982.

8. Howard, J. H. Jr., "Feature Selection in Human Auditory

Perception," Pattern Recognition, vol. 15(5), p. 397-403,

1982.

5-



PRESEARCH INCORPORATED

9. Howard, J. H. Jr., O'Hare John J., "Human Classification

of Complex Sounds," Naval Research Reviews, vol. 36(1), p.

26-32, 1984.

10. Holland, J. H., Adaptation in Natural and Artificial

Systems, Ann Arbor, MI: University of Michigan Press,

1975.

11. Holland, J. H., "Escaping Brittleness: The Possibility of

General Purpose Learning Algorithms Applied to Rule-based

Systems," In R S. Michalski, J. G. Carbonell, and T. M.

Mitchell, eds, Machine Learning II, Los Altos, CA: Morgan

Kaufmann Publishers, 1986.

12. Frey, P. W., "A Bit Mapped Classifier," Byte, vol.

d 11(12), p. 161-172, November 1986.

13. Schrodt, P. A., "Predicting International Events," Byte,

Vol 11(12) p. 177-192, November, 1986.

14. Jorgensen, C., Matheus, C., "Catching Knowledge in Neural

Nets," A. 1. Expert, San Francisco, Dec., 1986.

15. Hebb, D. 0., The Organization of Behavior, Wiley 6 Sons,

I New York, 1949.

16. Kohonen, T., Self Organization and Associative Memory,

Springer Verlag, New York, 1984.

17. Rumelhart, D. E. Zipser, D., "Feature Discovery by

Competitive Learning," Cognitive Science, vol. 9, p. 75-

112, 1985.

15-

' S

9

5o.

o 5-2



IL


